Interpretaciones Realidad Cuántica (Audio-Video)
Para decirnos algo acerca del mundo real, cualquier formalismo matemático debe poder interpretarse en función de cantidades medibles. Pero a su vez, para que un formalismo matemático se transforme en un formalismo físico también se requiere una interpretación ontológica. Si el paso del formalismo matemático a su interpretación ontológica muchas veces resultó problemático en la mecánica, las características anti-intuitivas del mundo cuántico y su referencia a un ámbito inobservable agudizan esta dificultad, abriendo el camino al surgimiento de diversas interpretaciones de esta teoría.
Interpretación de Copenhague
La interpretación de Copenhague fue el primer intento de explicación del mundo de los átomos tal como es representado por la mecánica cuántica. También conocida como interpretación ortodoxa o estándar, esta interpretación reunió un conjunto de ideas discutidas desde 1927 por un grupo de pensadores (Niels Bohr, Werner Heisenberg y Max Born, entre otros), que coincidieron en afirmar que la mecánica cuántica es una teoría correcta y completa (Faye 2014, Howard 2004). La interpretación de Copenhague fue presentada de un modo unitario -y por primera vez con este nombre- por Heisenberg en 1955 (Heisenberg 1958). Bajo esta denominación actualmente se agrupa una familia de interpretaciones de la mecánica cuántica que enfatizan el indeterminismo cuántico, la importancia de la complementariedad, y el papel que juega el aparato de medición clásico al definir la naturaleza de la medición y en la determinación de sus resultados efectivos.
Esta interpretación considera que el estado cuántico es un catálogo probabilístico de disposiciones. La función de onda o estado cuántico define para cada propiedad (posición, energía, momento) la distribución de probabilidad de sus valores posibles, identificando el cuadrado de la amplitud de la función de onda con una probabilidad, según la regla de Born.
Pero aunque la regla de Born permitió cierta interpretación del estado cuántico, no solucionó todas las dificultades interpretativas. El paradigmático experimento de las dos rendijas (Bohr 1958, 41-47), por ejemplo, pronto puso en evidencia que las probabilidades clásicas no interfieren entre sí del mismo modo que las probabilidades cuánticas (Plotnitsky 2010). Bajo estas circunstancias, Niels Bohr propuso el principio de complementariedad. Según este principio la teoría cuántica implica la admisión de modos de descripción complementarios, mutuamente excluyentes y cada uno completo en sí mismo. Un ejemplo de esta complementariedad es la dualidad onda-corpúsculo (Bohr 1937, Bohr 1950).
Interpretaciones que asumen un colapso subjetivo
A pesar de que Bohr y otros fundadores de la teoría negaron categóricamente la tesis ontológica de que el sujeto que mide impacta de un modo directo sobre el resultado de la medición, la hipótesis del colapso condujo también a interpretaciones subjetivistas de esta teoría. En este sentido, varios pensadores atribuyeron el colapso de la función de onda durante el proceso de medición a una intervención intrínseca de la mente del observador.
En Mathematical Foundations of Quantum Mechanics, von Neumann analizó el problema de la medición cuántica con profundidad, proponiendo extender la interacción entre el objeto y el instrumento de medida hasta alcanzar al observador. Argumentó que la medición de una propiedad observable sólo está completa cuando el resultado de la observación es registrado por quien mide. “La experiencia sólo permite hacer afirmaciones de este tipo: un observador ha hecho una afirmación cierta (subjetiva); y nunca una como ésta: una propiedad física tiene un cierto valor” (von Neumann 1955, 43). Con posterioridad a este trabajo seminal de von Neumann otros autores, como John Wheeler, incluyeron la conciencia del observador en el proceso de medición: “Ningún fenómeno es un fenómeno hasta que es un fenómeno observado” (Wheeler 1978, 43).
Sin embargo, tal vez fue Eugene Wigner quien primero propuso una interpretación subjetivista radical del problema de la medición. En la cosmovisión general de Wigner, el contenido de la conciencia constituye la realidad primaria y la realidad de los objetos físicos es sólo relativa a ella (Wigner 1964). Si se asume este contexto, no resulta posible una formulación consistente de las leyes de la mecánica cuántica que no refiera a la conciencia. Así, el vector de estado, para Wigner, no representa un aspecto cuántico de la realidad, sino el estado de la mente del experimentador. De manera que el salto implicado en el colapso ocurriría en la conciencia del observador, manifestando el cambio discontinuo que se produce en el estado de conocimiento del sujeto que mide (Wigner 1967).
Más recientemente, el Bayesianismo cuántico o QBism también interpreta el colapso de la función de onda de un modo marcadamente subjetivo. Esta interpretación considera que la mecánica cuántica es una herramienta que cualquier agente puede usar para evaluar, sobre la base de sus propias experiencias pasadas, sus expectativas de probabilidad de experiencias futuras, organizando así su propia experiencia. El QBism asume explícitamente una visión personalista de la probabilidad: las probabilidades de un evento son asignadas por un agente y son propias de él. Así, el estado cuántico tampoco sería una descripción de la realidad física externa, sino la expresión del grado personal de expectativas o creencias de un agente individual respecto a experiencias personales futuras específicas (Fuchs, Mermin y Schack 2014, Fuchs y Schack 2015).
Para el QBism, las mediciones no revelan un estado preexistente de las cosas. En cambio, la asignación de estados cuánticos es un juicio personal del agente. Una medición es la acción -o intervención- de un agente sobre el mundo que resulta en la creación de un resultado. Como el resultado de la medición a su vez es una nueva experiencia para ese agente, el colapso de la función de onda actualiza las asignaciones de estados según la nueva base de experiencias. Así, cuando en una medición se obtiene un resultado, el formalismo cuántico –que determina las probabilidades mediante la regla de Born- guía al agente en la actualización de las probabilidades de las mediciones siguientes. De esta manera la realidad difiere de un agente a otro. Lo que un agente considera real se apoya completamente en sus experiencias subjetivas. En definitiva, la mecánica cuántica en sí misma no trata directamente del mundo objetivo, sino que refiere a las experiencias del agente particular que utiliza la teoría.
Teorías que proponen un colapso objetivo
Para las teorías que asumen un colapso objetivo, en cambio, la reducción del vector de estado sucede objetiva y espontáneamente, sin que el observador asuma un papel relevante. El estado cuántico, según ellas, es real y evoluciona según una historia única. Sostienen, además, que durante el proceso de medición se quiebra el entrelazamiento que existía previamente entre el sistema y el entorno, dando lugar a una reducción del estado del sistema. Como en cierto sentido estas teorías consideran que la mecánica cuántica no es una teoría completa, las diversas variantes añaden alguna hipótesis que permite dar cuenta de la relación entre la evolución unitaria del vector de estado y su colapso. Entre las teorías que proponen un colapso objetivo del estado cuántico destacan las de Giancarlo Ghirardi (Ghirardi, Rimini y Weber 1986) y de Roger Penrose (Penrose 2009 [1989]).
La modificación que sugiere Ghirardi consiste en añadir a la ecuación de Schrödinger determinista y lineal un término estadístico y no-lineal. Esta incorporación permite que el estado de un sistema cuántico pueda sufrir un colapso espontáneamente durante su evolución natural (Ghirardi 2011, Ghirardi 2013).
Penrose, en cambio, propuso considerar los efectos gravitacionales en la estructura de la mecánica cuántica. Sugirió así “gravitacionar” la mecánica cuántica, en lugar de seguir el camino habitual de intentar cuantizar la relatividad (Penrose 2014). Bajo estos supuestos, postuló que la causa del fenómeno de reducción del estado cuántico es gravitacional, y predijo que los estados cuánticos permanecen en un estado de superposición sólo hasta que la diferencia entre las energías (autoenergías) de los estados que lo componen alcanza un nivel determinado. A este valor crítico lo llamó energía de un gravitón (Penrose 2009 [1989]). Es decir, Penrose sostuvo que los estados cuánticos en superposición tienen un tiempo de vida finito, debido a que las inestabilidades de las superposiciones cuánticas implican desplazamientos significativos de masa, que si bien pueden ocurrir en el aparato de medición y en la recepción de un fotón en la retina o nervio óptico del observador, tienen mayoritariamente lugar en el entorno. Por esta razón, cuando el entorno se encuentra entrelazado con el sistema cuántico en estudio, la reducción espontánea del estado cuántico del entorno también es necesariamente acompañada de una reducción de los sistemas cuánticos entrelazados con él (Penrose and Marcer 1998).
Interpretaciones estadísticas
Las interpretaciones de la mecánica cuántica que asumen el colapso de la función de onda consideran que el estado del sistema describe de un modo completo las características de un sistema individual. Para las interpretaciones estadísticas, en cambio, la función de onda describe sólo ciertas propiedades estadísticas de un conjunto de sistemas que fueron preparados de un modo similar. Es decir, para las interpretaciones estadísticas la función de onda es una función estadística abstracta, que se aplica únicamente a procedimientos similares que se repiten. Esta interpretación tiene como consecuencia que la indeterminación ya no es una propiedad ontológica, sino un principio de dispersión estadística.
Max Born fue el primero en proponer que la función de onda no refiere a un experimento individual, al afirmar que la función de onda representa el resultado estadístico de muchos experimentos (Born 1955, Pais 1982). Enfatizó así la distinción entre un conjunto de réplicas de una partícula en su entorno experimental y un haz de partículas (que es un tipo de sistema de muchas partículas).
En general, las interpretaciones estadísticas consideran a la mecánica cuántica como una teoría clásica de procesos probabilísticos o estocásticos, y exclusivamente interpretan su formalismo sin modificarlo. Aunque también existen propuestas afines a las interpretaciones estadísticas que sugieren extender el formalismo cuántico de diversos modos. Estas propuestas suelen añadir nuevos elementos que son compatibles tanto con el formalismo estándar de la mecánica cuántica como con las interpretaciones de la mecánica estadística. Un ejemplo es la consideración de una distribución de probabilidad conjunta para observables que no conmutan (Ballentine 1970). Otra variación que resulta compatible con las predicciones estadísticas es la que incorpora las interpretaciones que asumen que la mecánica cuántica no es una teoría completa (Einstein, Podolsky y Rosen 1935). En estos casos, las distribuciones estadísticas de la teoría cuántica se corresponden con los valores promedio de ciertas variables ocultas (variables sin acceso empírico) que son las que permiten determinar los resultados de los eventos individuales.
Mecánica bohmiana
El ejemplo más simple de una teoría de variables ocultas es la teoría de la onda-piloto, propuesta inicialmente por de Broglie en 1927 (de Broglie 1970) y luego por David Bohm en 1952 (Bohm 1952a, b). Consiste en una reformulación del formalismo de la mecánica cuántica que incluye la postulación, a un nivel inferior, de ciertas variables ocultas integradas al estado cuántico. En la mecánica bohmiana, la posición y la velocidad de las partículas juegan el mismo papel que en la termodinámica estadística, de modo que sólo se manifiestan macroscópicamente a través de sus valores medios. Las variables ocultas completan la información de la función de onda, fijando las trayectorias de las partículas y restaurando el determinismo en el nivel microfísico. “La mecánica bohmiana es el modo mínimo de completar la ecuación de Schrödinger de un sistema de partículas no relativistas, para conseguir una teoría que describa un genuino movimiento de partículas” (Goldstein 2013). Es, además, una teoría empíricamente indistinguible de la mecánica cuántica estándar.
Para esta versión de la mecánica cuántica, la causa de probabilidades radica en una ignorancia inevitable de ciertos factores relevantes del sistema físico, coexistiendo así en ella un determinismo ontológico con un indeterminismo epistemológico. Debido al carácter ontológicamente determinista de la propuesta de Bohm, se la conoce también con el nombre de mecánica cuántica causal.
Según la teoría de la onda piloto, las partículas son guiadas por la función de onda, que evoluciona bajo el régimen de la ecuación de Schrödinger sin colapsar nunca. Una característica de la mecánica bohmiana es que admite una descripción de los fenómenos cuánticos basada en una ontología clásica. Considera partículas puntuales que se mueven en el espacio, con su posición y velocidad bien determinadas en todo momento. La evolución de las partículas, a su vez, se encuentra regida por la ecuación de Hamilton-Jacobi, según la reformulación de las leyes de Newton llevada a cabo por la mecánica racional.
Para explicar los peculiares resultados experimentales de la mecánica cuántica con una ontología clásica, Bohm propuso considerar al sistema cuántico como partículas definidas con precisión sobre las que actúa –además del potencial clásico- un potencial cuántico (potencial de Bohm). Es decir, Bohm postuló la existencia de una nueva fuerza de la naturaleza que actúa en el nivel cuántico: la fuerza cuántica. El comportamiento anómalo de los fenómenos cuánticos se debería así a la acción de esta fuerza, que necesariamente debe ser no-local, pues depende de un modo instantáneo de la posición y de la velocidad de todas las partículas del sistema.
Pero como el formalismo de la mecánica bohmiana también se encuentra sub-determinado, es posible a su vez interpretar el potencial de Bohm de diversas maneras, permitiendo el surgimiento de distintas interpretaciones de la mecánica causal que proponen ontologías distintas. Por ejemplo, un monismo de partículas (Dürr, Goldstein y Zanghí 1992), un dualismo de ondas piloto y partículas (Valentini 2010), un dualismo radical de la función de onda universal y la partícula universal (Albert 1996), un dualismo de partículas y fuerzas primitivas (Belousek 2003), entre otras.
La interpretación everettiana
En 1957, Hugh Everett presentó su tesis doctoral. En ella pretendió desarrollar una meta-teoría de la mecánica cuántica estándar que permitiera tanto deducir desde ella la teoría cuántica tradicional, como facilitar la aplicación de la mecánica cuántica a la relatividad general (Everett 1957). La primera dificultad que encontró fue que la formulación tradicional de la mecánica cuántica no resulta adecuada para el tratamiento de sistemas aislados como el de un universo cerrado, pues refiere a sistemas sujetos a una medición u observación externa, responsable esta última de la reducción del estado cuántico. Para atender a este punto propuso la formulación del estado relativo de la mecánica cuántica, una teoría causal fundada puramente en la mecánica ondulatoria y cuyas predicciones concuerdan con los resultados empíricos. También en 1957, John Wheeler, director de tesis de Everett, publicó un artículo apoyando estas nuevas ideas (Wheeler 1957).
En la formulación de Everett, la entidad física más fundamental es la función de onda universal. Ésta se compone con los estados relativos de los subsistemas que constituyen el sistema universal. Los estados relativos están correlacionados y no son independientes entre sí, de manera que no tiene sentido considerar el estado absoluto de un subsistema. Como la ecuación de Schrödinger rige la dinámica temporal de la función de onda universal, ésta evoluciona de un modo determinista y reversible.
La propuesta everettiana considera también que la teoría de la observación es un caso especial de la teoría de correlaciones entre subsistemas. Así, Everett se propuso deducir las predicciones estándar de la mecánica cuántica a partir de las experiencias subjetivas de un grupo de observadores, a los que trató exclusivamente como sistemas físicos ordinarios, modelándolos mediante ondas mecánicas. Propuso un modelo matemático específico para describir la interacción entre cada observador y el sistema físico observado. Sostuvo que si se entiende a la experiencia actual como los registros -en la memoria de los observadores modelados- de los resultados de mediciones anteriores, esta puede modelarse exclusivamente mediante ondas mecánicas. Afirmó además que en cada observación (o interacción) sucesiva, el estado del observador se ramifica en una serie de estados diferentes, donde cada rama corresponde a un resultado distinto de la medición y al correspondiente auto-estado del sistema físico. Everett asumió que las diversas ramificaciones existen simultáneamente, y continúan superpuestas luego de la secuencia de observaciones. El estado de superposición global incluye las observaciones del conjunto de observadores. El objetivo que Everett persiguió con este procedimiento fue demostrar que los registros de la memoria del observador descritos de esta manera coinciden con los resultados del formalismo estándar.
Si bien en un primer momento muy pocos físicos aceptaron las ideas de Everett, las ramificaciones de sus estados condujeron luego a interpretaciones variadas, en términos de múltiples mundos, historias o mentes. Aunque estas diferentes descripciones del mundo cuántico presentan ontologías distintas, todas coinciden en tratar a la función de onda del universo como una multiplicidad de realidades a un nivel u otro.
Uno de los problemas tradicionales al que se enfrentaron todas las interpretaciones everettiana fue el problema de la base privilegiada: puesto que cualquier función de onda puede expresarse como superposición de autoestados de diferentes observables (puede expresarse en diferentes bases del espacio de Hilbert), no queda claro respecto de qué estados privilegiados (de qué base) se produce la ramificación. Desde hace ya varias décadas, estas interpretaciones sustituyen el colapso de la función por un proceso de decoherencia cuántica. Es decir, consideran al tradicional colapso como una consecuencia de las interacciones espontáneas entre el sistema y su entorno, capaces de seleccionar los estados privilegiados y de eliminar los fenómenos de interferencia entre los estados superpuestos, recuperando así un patrón casi clásico de probabilidades (Bacciagaluppi 2012).
En esta línea se inscribe la interpretación existencial de Wojciech Zurek, que complementa la formulación del estado relativo con un proceso de decoherencia (Zurek 1993). Para Zurek, la decoherencia emerge cuando se reconoce la división del universo en entidades separadas, y surge la necesidad de elegir una rama individual estableciendo el borde entre lo cuántico y lo clásico. Para él, los estados privilegiados son elegidos mediante un proceso de super-selección inducida por el entorno o Darwinismo cuántico (Zurek 2003, Zurek 2009).
Múltiples mundos
La interpretación de múltiples mundos de Bryce DeWitt y Neil Graham es, posiblemente, la más conocida de la familia de interpretaciones everettianas. Según ella, “la realidad, que se describe conjuntamente por las variables dinámicas y el vector de estado, no es la realidad que habitualmente pensamos, sino una realidad compuesta por múltiples mundos. En virtud de la evolución temporal de las variables dinámicas el vector de estado se descompone naturalmente en vectores ortogonales, evidenciando una división continua del universo en una multitud de mundos mutuamente inobservables pero igualmente reales” (DeWitt y Graham 1973, 6). Es decir, como todos los estados cuánticos se realizan en infinitos mundos que se bifurcan, todas las posibles historias alternativas y futuras son reales, representando cada una de ellas un mundo actual o universo. El multiverso resulta así compuesto por la superposición cuántica de una infinidad de universos o mundos cuánticos, incomunicados entre sí y cada vez más divergentes.
Según Jeffrey Barrett, muchos de los problemas que surgen al considerar mundos que se bifurcan se pueden evitar si, en lugar de identificar los mundos con los estados locales mismos, se los identifica con las trayectorias de los estados locales. En particular, si aceptan los múltiples mundos pero no sus bifurcaciones, se pueden evitar los problemas que las bifurcaciones implican para el tratamiento temporal de la identidad de los observadores. Esto significaría considerar que cada trayectoria de los estados locales representa la historia de un mundo posible, y que la medida de la probabilidad sobre las posibles historias determina la prioridad epistémica de que un mundo posible ocurra realmente en la realidad (Barrett 2003, 179-184).
La idea de una multiplicidad de mundos o realidades continúa siendo muy controvertida en la actualidad. Pero a pesar de esto, esta versión de la interpretación everettiana, con sus diversas variantes, se ha vuelto enormemente influyente en la física teórica contemporánea (Saunders et al. 2010, Wallace 2012).
Múltiples mentes
Esta variante de la propuesta de Everett fue formulada originalmente por H. Dieter Zeh (Zeh 1970, Zeh 2000). Esta interpretación se apoya en el hecho de que los diversos estados de conocimiento del observador evidencian procesos físico-químicos en el cerebro, asumiendo así que los sistemas observados se acoplan al soporte físico del conocimiento del observador. Considera, además, que el mundo cuántico (descripto por la función de onda universal) corresponde a una superposición de un sinnúmero de componentes, que clásicamente representarían mundos diferentes. Puesto que todos los componentes están dinámicamente interrelacionados, pueden acoplarse en ramificaciones. Para esta interpretación, sin embargo, las ramificaciones no representan mediciones objetivas, como propuso Everett. Interpreta, en cambio, que no se ramifica el mundo real sino la percepción del observador en diversos niveles de conocimiento aparente del mundo. Además, como sólo ciertas componentes de la función de onda total determinan físicamente el conocimiento, considera que las otras componentes son meras ficciones heurísticas, que se incorporan a la función de onda con el objetivo de obtener leyes dinámicas generales que tienen validez empírica.
El nombre de múltiples mentes se debió a David Albert y Barry Loewer (Albert y Loewer 1988). La propuesta de estos autores se enmarcó en un fisicalismo en filosofía de la mente, que asume que los estados mentales emergen o supervienen del estado del cerebro (o del cerebro y el entorno). Pero el costo que implicó declarar esta superveniencia fue postular que cada ser sensible tiene asociado un número infinito de mentes, proponiendo un dualismo radical.
Interpretaciones modales
Otra familia de interpretaciones que surgieron a principios de 1970 son las interpretaciones modales (van Fraassen 1972, Vermaas 1999, Lombardi y Dieks 2014). Estas interpretaciones focalizan su atención en las propiedades de los sistemas físicos, sin otorgar una especial importancia teórica al proceso de medición. Las interpretaciones modales son realistas, pues asumen que los sistemas cuánticos poseen propiedades definidas en todos los instantes de tiempo con independencia de que se realicen mediciones sobre ellos. Consideran, además, a la medición cuántica como una interacción ordinaria, independiente del observador.
Un elemento central de las interpretaciones modales es la consideración de que el estado dinámico del sistema limita las posibilidades, no las actualidades. “El estado delimita qué puede y qué no puede ocurrir, y cuán probable es –delimita posibilidad, imposibilidad y probabilidad de ocurrencia- pero no dice qué ocurre realmente. La transición desde lo posible a lo actual no es una transición del estado, sino una transición descrita por el estado” (van Fraassen 1991, 279). Es decir, el estado cuántico no es una descripción de las propiedades que el sistema físico posee, sino una descripción de sus posibles propiedades. Así, la característica específica de las interpretaciones modales es la distinción entre el estado-valor del sistema en cualquier instante (que representa todas las propiedades físicas del sistema que se encuentran simultáneamente definidas en un instante particular), y el estado dinámico del sistema (que determina qué propiedades físicas puede poseer el sistema y cuáles puede tener más tarde). La relación entre el estado dinámico y el estado-valor es probabilística, ya que la probabilidad mide la propensión a entrar en el ámbito de lo actual que tiene cada propiedad.
Las diversas interpretaciones que integran esta familia utilizan el formalismo estándar de la mecánica cuántica, pero no incorporan la hipótesis del colapso. Consideran que el estado cuántico evoluciona siempre unitariamente de acuerdo a la ecuación de Schrödinger. Es decir, la ecuación de Schrödinger rige la evolución temporal de las probabilidades y no la evolución de las propiedades actuales. Para estas interpretaciones, la mecánica cuántica es una teoría intrínsecamente probabilística, pues asumen que el indeterminismo es una característica de nuestro mundo: el futuro no es simplemente desconocido, sino que es potencial, no está todavía decidido.
Dado que por el teorema de Koche y Specker, no todos los observables del sistema pueden poseer valor definido simultáneamente (Kochen y Specker 1967), cada interpretación modal brinda una regla de actualización que recoge, del conjunto de todos los observables del sistema físico, el subconjunto de aquellos que tienen un valor definido. Esta regla no se infiere del formalismo, sino que es introducida como un postulado interpretativo. En la interpretación atómica modal, por ejemplo, los sistemas compuestos sólo tendrán las propiedades que heredan de los subsistemas atómicos que los constituyen (Bacciagaluppi y Dickson 1999). Una interpretación que resolvió apropiadamente el problema de la medición es la interpretación modal de Kochen-Dieks. En ella, el valor definido de los observables se escoge mediante una decomposición biortogonal del estado cuántico puro del sistema (Dieks 1988, Dieks 1994). Más recientemente, la interpretación modal-hamilitoniana (Lombardi y Castagnino 2008), que basa la regla de actualización en el hamiltoniano del sistema, también ha resuelto el problema de la medición y ha suministrado, además, las bases para comprender el límite clásico de la mecánica cuántica.
Historias en mecánica cuántica
Entre los intentos más exitosos para resolver el problema de la medición cuántica se encuentran los formalismos de historias cuánticas. En ellos el estado cuántico ya no evoluciona según la ecuación de Schrödinger, sino que se introducen evoluciones nuevas en términos de familias, y particularmente, las que se obtendrían del colapso en la medición (Vanni 2015). Entre sus principales variantes se encuentran el formalismo de historias consistentes, y el formalismo de historias contextuales.
La formulación de historias consistentes es una interpretación probabilística de la mecánica cuántica aplicable a sistemas físicos aislados (Griffiths 1984, Griffiths 1993, Omnès 1988). Trabaja con secuencias de eventos o valores registrables en una medición (microscópicos, macroscópicos, o ambos) que ocurren en tiempos sucesivos, a las que llama historias. Como esta formulación no otorga una especial relevancia al proceso de medición, evita los problemas del colapso, la irreversibilidad y la implicancia de la conciencia del observador.
La mayor innovación de esta formulación es el uso de una determinada condición de consistencia -que no refiere a las mediciones- para la selección de historias consistentes entre todas las historias posibles. La condición de consistencia es un requisito matemático que restringe la elección de la secuencia de eventos a la cual asignar una probabilidad. Cuando se satisface la consistencia, la formulación asigna una probabilidad condicional a los eventos intermedios entre los estados inicial y final. Aunque en esta formulación la ecuación de Schrödinger no determina la evolución del sistema, que resulta totalmente estocástica, sí participa en los cálculos de probabilidades de las historias al brindar la evolución de las probabilidades de los valores de las mediciones. La condición de consistencia se encarga de restringir el conjunto de historias posibles a familias de historias consistentes. Las probabilidades que se asignan a las historias de una familia consistente pueden ser interpretadas y tratadas matemáticamente como si fueran probabilidades clásicas. Sólo las historias consistentes, además, tienen un significado físico.
La reversibilidad es una característica de esta interpretación, pues el procedimiento completo que determina la consistencia y asigna probabilidades es explícitamente independiente del sentido del flujo del tiempo. Por otra parte, como la interpretación de historias es explícitamente probabilística, no da cabida a las controvertidas afirmaciones everettianas de un universo que continuamente se está dividiendo en mundos separados, con situaciones macroscópicas diferentes en cada uno de ellos. Si bien se puede considerar que esta formulación es una extensión o generalización de la interpretación estándar, es una generalización que no radica en la consideración de variables ocultas.
El formalismo de historias contextuales, por su parte, amplía la noción habitual de contexto para permitir el tratamiento de sistemas cuánticos con propiedades diferentes a tiempos distintos. Este formalismo no exige una condición de consistencia, pero requiere que los observables que pertenecen a una historia formen un contexto. Es decir, los operadores correspondientes deben sumar la identidad y conmutar entre sí, de modo que se los pueda considerar representativos de un conjunto de propiedades cuánticas exhaustivas y compatibles. En el formalismo de historias contextuales, la ocurrencia de una historia particular es aleatoria, al igual que en el formalismo de historias consistentes. Pero a diferencia de lo que sucede en este último, la evolución de las propiedades en el formalismo de historias contextuales es determinista (Laura y Vanni 2008a, b, Losada, Vanni y Laura 2013).
Interpretaciones relacionales
Las interpretaciones relacionales conciben al mundo como una red de componentes que interactúan, y a la mecánica cuántica como la descripción de la red de relaciones que conecta los diversos sistemas físicos entre sí. Según ellas, la mecánica cuántica es una teoría completa, que describe el modo en el que se interrelacionan los diversos sistemas durante una interacción física. La característica fundamental de estas interpretaciones es el rechazo a las nociones de estado absoluto del sistema, sistemas aislados o eventos absolutos. Inspirados en la teoría de la relatividad, asumen, en cambio, que los valores de las magnitudes físicas siempre son relativas al observador, entendiendo al observador como un objeto físico con un determinado estado de movimiento, y no como una mente o una conciencia (Laudisa y Rovelli 2013).
La interpretación relacional más desarrollada es la propuesta por Carlo Rovelli, conocida con el nombre de mecánica cuántica relacional (Rovelli 1996). Según ella, la mecánica cuántica refiere a las descripciones físicas de sistemas relativos a otros sistemas, brindando un esquema de descripción completo y auto-consistente del mundo físico, apropiado al nivel de las observaciones experimentales actuales.
La mecánica cuántica relacional destaca que no es físicamente sostenible sobre bases experimentales una descripción del estado del mundo que pueda ser universal o compartida por todos los observadores. Es preferible así reconocer que el estado cuántico es una noción relacional. Pues si observadores distintos dan descripciones diferentes del estado de un mismo sistema, la noción de estado del sistema no es una noción absoluta, sino dependiente del observador. Una descripción cuántica es una formalización de propiedades de un sistema relativo a un dado observador. “El significado completo de q=1 es q=1 relativo a O” (Rovelli 1996, 1652).
Es decir, la mecánica cuántica describe sólo información relativa. Con la palabra información se indica el carácter relacional de todas las afirmaciones contingentes sobre los valores de las magnitudes físicas o estados del sistema. La cantidad de información es una medida del número de elementos de un conjunto de alternativas entre las cuales se elige una configuración. La información es una cantidad discreta, es decir, hay una cantidad mínima de información intercambiable. El intercambio se realiza a través de interacciones físicas. El mundo puede descomponerse en una colección de sistemas, cada uno de los cuales puede considerarse tanto un sistema observador como un sistema observado. El sistema observador es quien tiene información sobre el sistema observado. El proceso de adquirir información (una medición) puede describirse como una pregunta que un sistema hace a otro.
En 1997 Gyula Bene también propuso una interpretación relacional, al postular un sistema de referencia cuántico del que dependen los estados cuánticos de los diferentes sistemas. A partir de esta noción, desarrolló una nueva formulación de la mecánica cuántica, que también da cuenta, de un modo consistente, de la relación entre estados respecto a diferentes sistemas de referencia (Bene 1997).